Варианты зачисления на курс

В курсе рассматриваются основные разделы машинного обучения как элемента общего направления искусственного интеллекта. Особое внимание уделено основным задачам и определениям машинного обучения, включая индуктивное и дедуктивное обучение, обучение с учителем и без учителя. Рассмотрены основные методы и модели машинного обучения, включая метод ближайших соседей, деревья решений, нейронные сети. Даются понятия объяснительного интеллекта. Изучение курса опирается на знания в области теории вероятностей и математической статистики, линейной алгебры и методов оптимизации.

О курсе

Машинное обучение как часть направления искусственного интеллекта является одним из наиболее перспективных и динамично развивающихся областей исследований, результаты которого уже сегодня демонстрируют эффективность в самых различных прикладных областях: в медицине, биологии, робототехнике, в обработке больших объемов данных, в создании автономных систем и устройств, в распознавании речи, поисковых системах.

В курсе рассматриваются основные положения, понятия, методы, модели и алгоритмы машинного обучения для решения задач классификации, восстановления регрессии и кластеризации. Особое внимание уделено фундаментальным понятиям машинного обучения, включая эмпирический функционал риска или ошибки, переобучение, компромисс между обучением и тестированием. Также большое внимание уделено вопросам, связанным с обучением нейронных сетей, с различными конфигурациями нейронных сетей, включая сверточные сети и порождающие сети.

Skill Level: Beginner
Гости не имеют доступа к этому курсу. Войдите в систему.